
NASA-TM-II2249

To Appear in the

Journal of Supercomputing

RNR-89-004

FFTs in External or Hierarchical Memory

David H. Bailey

September 13, 1989

Abstract

Conventional algorithms for computing large one-dimensional fast Fourier transforms

(FFTs), even those algorithms recently developed for vector and parallel computers, are

largely unsuitable for systems with external or hierarchical memory. The principal reason

for this is the fact that most FFT algorithms require at least m complete passes through

the data set to compute a 2'_-point FFT.

This paper describes some advanced techniques for computing an ordered FFT on a

computer with external or hierarchical memory. These algorithms (1) require as few as two

passes through the external data set, (2) employ strictly unit stride, long vector transfers

between main memory and external storage, (3) require only a modest amount of scratch

space in main memory, and (4) are well suited for vector and parallel computation.

Performance figures are included for implementations of some of these algorithms on

Cray supercomputers. Of interest is the fact that a main memory version outperforms the

current Cray library FFT routines on the Cray-2, the Cray X-MP, and the Cray Y-MP

systems. Using all eight processors on the Cray Y-MP, this main memory routine runs at

nearly two gigaflops.

The author is with the Numerical Aerodynamic Simulation (NAS) Systems Division at

NASA Ames Research Center, Moffett Field, CA 94035.



Introduction

The development of numerous advanced architecture computers has posed a consid-

erable challenge to computer scientists. Many numeric algorithms that were completely

satisfactory for traditional serial computers are unsatisfactory for these advanced systems.

This phenomenon is particularly pronounced in the case of algorithms for evaluating one

dimensional fast Fourier transforms.

One reason for this difficulty is the fact that many modern computers, particularly

those with interleaved main memories, do very poorly with data that is accessed with a

memory stride that is a large power of two. By far the most popular sizes of data to be

transformed using FFTs are powers of two, and traditional implementations of FFTs for

such data sets involve heavy use of power of two memory strides. Fortunately, it is possible

to devise alternative FFT algorithms that do not rely on power of two strides. Indeed,

some FFT algorithms can be performed using exclusively unit stride data access in inner

computational loops [3], [5], [6], [9], [10]. Even for systems with external or hierarchical

memory systems, these unit stride algorithms are a definite improvement over conventional

algorithms, since unit strides improve the locality of accesses to and from external memory.

However, many FFT algorithms, both traditional and modern, still require roughly rn

passes through the data set to compute a 2'_-point FFT. The number of required passes

can be significantly reduced by using radix-4 or radix-8 variations of these algorithms,

but the number of passes remains proportional to m. Since such external data access is

usually a crucial bottleneck in such computations, it would be highly desirable to reduce

this number to a bare minimum.

The Basic "Four Step" FFT Algorithm

There is one algorithm in the FFT literature that is quite effective in reducing the

number of passes through the dataset. Recently variants of this algorithm were featured

in papers by Agarwal and Cooley [1, p. 150], Ashworth and Lyne, [4, p. 219], and

Swarztrauber [10, p. 9.02 - 203]. Swarztrauber used this technique as a starting point for a

very efficient hypercube FFT, and both [1] and [10] noted the suitability of this algorithm

for systems with nonlocal memory systems, including hierarchical and distributed memory

designs. However, as it turns out, this algorithm was actually first presented over twenty

years ago in a paper by Gentleman and Sande [8, p. 569]. This early paper even described

the application of this algorithm to a system with hierarchical memory. Unfortunately,

this algorithm appears to have been largely forgotten in the interim, as a number of more

recent papers have suggested much less efficient methods.

This algorithm, which shall hereafter be referred to as the "four step" FFT algorithm,

can be stated very succinctly. Let r_ = _zlr_2 be the size of the transform. Note that r_

does not necessarily need to be a power of two. On many systems, the implementation

of this algorithm is most efficient when nl and n2 are as close as possible to x/-_. In the

following and hereafter, matrices will be assumed to be stored in memory columnwise as

in the Fortran language. The FFT of n complex input data values can then be obtained

by performing the following four steps:

2



1. Perform nl simultaneous n2-point FFTs on the input data considered as a nl × n2

complex matrix.

2. Multiply the resulting data, considered as a nl × n2 matrix Ajk, by e+i_Jk/". The ±

sign is the sign of the transform.

3. Transpose the resulting nl × n2 complex matrix into a n2 x nl matrix.

4. Perform n2 simultaneous hi-point FFTs on the resulting n2 × nl matrix.

Several important features of this algorithm should be noted: first of all, note that both

of the simultaneous FFT steps can be performed using exclusively unit stride data access,

which is optimal on virtually any computer system. Secondly, this algorithm produces an

ordered transform (provided the simultaneous FFTs are ordered) it is not necessary

to perform a bit reversal permutation, which is inefficient on many advanced computer

systems. Finally, note that only three passes through the external data set are required to

perform this algorithm -- the second step can be performed on a block of data after the

first step, before it is returned to memory. This bounded number of passes is in accordance

with the I/O complexity results in [2].

Main Memory Performance Results using the Four Step FFT

Depending on implementation, the four step FFT algorithm may actually require a

slightly larger number of floating-point arithmetic operations than conventional FFT algo-

rithms. In spite of this slight handicap, it is remarkably efficient even for a single processor

vector computer transforming data in main memory. As can be seen in tables 1 and 2,

a straightforward implementation of this scheme is up to 10% faster than Cray's library

routine on the Cray-2 and up to 20% faster than Cray's library routine on the Cray Y-MP.

The percentage results on the Cray X-MP are very close to those on the Cray Y-MP, which

is to be expected since the CPU and memory designs of the X-MP and Y-MP systems are

very similar, differing mainly in speed of operation. For these tests, the four step FFT

algorithm was implemented using a simple Fortran program; assembly code was employed

only within the Cray library simultaneous FFT routine (CFFTMLT), which is called by

this Fortran program to perform steps 1 and 4. The transpose step (step 3) was performed

without power of two strides by employing a diagonal technique, as mentioned in [6, _.

85]. The Cray-2 library 1-D FFT routine (CFFT2) used in table 1 is an assembly-coded

implementation of an algorithm described by the author in a previous paper [6]. The Cray

Y-MP library 1-D FFT routine (CFFT2) used in table 2 is essentially the same routine

that has been available for some time on the Cray X-MP systems.

The CPU times shown in both tables 1 and 2 are for forward 2m-point FFTs followed

by inverse FFTs, averaged over ten trials, in seconds. All megaflops performance figures

in these tables are computed based on 10rn2 '_ floating-point operations, even though the

four step routine may perform slightly more than this figure. These tests were run in a

typical daytime environment, and so the results reflect a normal amount of memory bank

contention. The computers used for these tests belong to the Numerical Aerodynamic



Simulation (NAS) Systems Division at NASA Ames Research Center. This particular

Cray-2 system has a clock period of 4.1 nanoseconds (ns), and has 268 million words of 80

ns DRAM main memory. The Cray Y-MP system used for these tests has a clock period

of 6.3 ns and 33 million words of bipolar main memory. This Y-MP system was the first

Y-MP delivered by Cray. Newer Y-MP systems have a faster clock (6 ns), and thus these

results would be correspondingly better on the newer systems.

The results listed in tables 1 and 2 are single processor results -- no attempt was made

to employ more than one processor. However, with the new "autotasking" feature now

available on Cray systems, it is possible to study the performance of a program using all

available processors, with only a minimum of changes to the source code. When autotasking

was invoked on the Fortran program mentioned above, performance levels very nearly eight

times the single processor levels were achieved on the eight processor Y-MP. These results

are shown in table 3. This very high speedup underscores the suitability for the four step

FFT algorithm for parallel processing.

FFTs on Data in External or Hierarchical Memory Systems

The Cray-2 is noted for its very large main memory. Most Cray-2 systems include 268

million 64 bit words of main memory, although recently Cray has shipped a 536 million word

system. However, the performance of the Cray-2 on many codes in a normal production

environment is not outstanding, due to severe memory bank contention, a direct result

of the relatively slow operation speed of DRAM memory chips. Most Cray X-MP and

¥-MP systems utilize a faster technology (bipolar) in main memory, so that memory bank

contention is very much reduced. However, bipolar memory chips are not available in

nearly the density of equivalent generation DRAM chips, and so as a result the largest

main memory currently available for Y-MP systems is 33 million 64 bit words. Y-MP

systems typically have eight CPUs, so this means an average of only four million words

per processor. Systems that support interactive as well as batch users must be even more

restrictive in the amount of main memory that can be allocated to a single job.

As a result, users of the Cray X-MP and Y-MP systems who wish to perform large one

dimensional FFTs are led to consider utilizing the solid state disk (SSD) available on these

systems. SSD systems with a capacity of up to 536 million words are now available on

the ¥-MP. Users of the ETA-10 or the IBM 3090/VF systems have an analogous choice in

utilizing the virtual memory system, which is a large semiconductor memory similar to the

Cray SSD, but which does not require explicit programmer input/output commands. Users

on other systems can even consider utilizing disk drives, although the relative slowness of

such devices compared to main memory is a bottleneck even with the best of algorithms.

In addition to minimizing the number of data accesses to an external memory device, an

obvious consideration in designing an efficient algorithm for such systems is to minimize

the amount of scratch space required in main memory. Clearly if an external memory

algorithm requires a substantial scratch array in main memory, then the largest transform

size will again be limited by the available main memory. In addition, it will be assumed in

the following that the amount of external memory is also limited and must be conserved.

4



Size

m

8 0.0005

9 0.0008

10 0.0013

11 0.0021

12 0.0036

13 0.0074

14 0.0145

15 0.0300

16 0.0559

17 0.1248

18 0.2426

19 0.4971

2O 1.0260

Four Step FFT Cray Library FFT

Time ] MFLOPS Time MFLOPS

42.5

60.9

76.4

106.6

137.8

143.8

158.5

163.9

187.5

178.6

194.5

200.4

204.4

0.0004

0.0006

0.0010

0.0021

0.0038

0.0073

0.0138

0.0327

0.0660

0.1260

0.2555

0.5763

1.1863

57.2

81.8

106.0

109.4

130.6

145.2

165.7

150.2

159.0

176.8

184.7

172.9

176.8

Table 1: The Four Step FFT vs. Cray's Library Routine on the Cray-2

Size

m

8 0.0003

9 0.0005

10 0.0008

11 0.0013

12 0.0024

13 0.0049

14 0.0103

15 0.0212

16 0.0443

17 0.0935

18 0.1976

19 0.4117

20 0.8587

Four Step FFT Cray Library FFT

Time MFLOPS Time I MFLOPS
68.68

102.24

128.16

168.91

201.90

215.88

222.57

231.67

236.78

238.39

238.81

241.96

244.23

0.0001

0.0003

O.0006

0.0013

0.0028

0.0060

0.0126

0.0265

0.0557

0.1167

0.2439

0.5090

1.0635

137.85

151.88

161.27

168.08

173.51

178.09

181.86

185.24

188.26

190.97

193.44

195.70

197.20

Table 2: The Four Step FFT vs. Cray's Library Routine on the Cray Y-MP

5



Size

12 0.00079

13 0.00138

14 0.00218

15 0.00376

16 0.00667

17 0.01318

18 0.02566

19 0.05275

20 0.10882

Time MFLOPS Speedup

625.09

771.49

1053.61

1308.07

1571.73

1690.03

1838.72

1888.53

1927.12

3.096

3.574

4.734

5.646

6.638

7.089

7.700

7.805

7.891

Table 3: Cray Y-MP Performance of the Four Step FFT Using Eight Processors

It will also be assumed for the time being that the final result in external memory must

be physically ordered u index schemes or "virtual" orderings of external blocks will not
be allowed.

Reducing the Scratch Space Requirement in the Four Step FFT

As presented above, a straightforward implementation of the four step FFT algorithm

requires scratch space for several different purposes. These are as follows:

• 2n cells for the precomputed root of unity table.

• 2n cells of scratch space for the simultaneous FFT steps.

• 2n cells of scratch space for the transpose step.

The scratch space requirement for the simultaneous FFT steps can easily be reduced

by noting that the nl simultaneous n2-point FFTs (i.e. in step 1 of the four step FFT)

may be performed in batches of v rows, where v is the natural vector length of the system

being used. If the simultaneous FFTs employ an algorithm, such as the Stockham FFT,

which requires a scratch array the same size as the input data array, then only 4vn2 scratch

cells are required. This figure may be reduced by one half if an in-place algorithm can be

efficiently used for the simultaneous FFTs. Note that if the individual processors do not

rely on vector processing, then only one row need be fetched at a time, and these scratch

space figures drop to only 4n2 cells and 2n2 ceUs, respectively. For step 4 of the four step

FFT, the corresponding scratch space figures may be obtained by replacing n2 by rtl in

the above discussion.

However, the scratch space requirements for the simultaneous FFT steps in reality are

dependent more on the block size b of an efficient input/output (I/O) transfer between

main and external memory. In other words, if the natural I/O block length is 128, then

128 rows of the nl x n2 complex matrix should be fetched into main memory, or else the

6



I/O operations will be highly inefficient. Thus it follows that a main memory scratch space

of size 2bn2 + 2vn2 is needed for the first step of the four step algorithm. In an similar

manner, the last step of the four step FFT requires 2brtx + 2vnl scratch ceils. The second

term of each of these expressions may be omitted if an in-place algorithm can be efficiently

used for simultaneous FFTs in main memory.

The scratch space for the two FFT steps could be reduced to virtually zero if an FFT

algorithm somewhat more complicated than the four step FFT were used. This algorithm
is as follows:

1. Transpose the input data set, considered as a nl x n2 complex matrix, into a n2 x n_
matrix.

2. Perform nl individual =2-point one dimensional FFTs on the resulting n2 x nl matrix.

3. Multiply the resulting n2 x n_ complex matrix A_j by e±iJk/'_.

4. Transpose the resulting n2 x nl matrix into a nl x n2 matrix.

5. Perform =2 individual hi-point one dimensional FFTs on the resulting nl x n2 matrix.

6. Transpose the resulting n_ x =2 complex matrix into a n2 x nx matrix.

This algorithm, which could be termed by analogy the "six step" FFT algorithm, is very

well suited for distributed memory systems, as the individual one dimensional FFTs can be

performed in individual processors. Its main memory scratch requirement is only 4n_ cells

for step 2 and 4nl cells for step 5 (per processor). As before, if an in-place FFT algorithm

can be efficiently used in main memory, then these figures can be reduced by one half.

However, there are other ways of performing FFTs on systems such as MIMD hypercubes

[10], and the six step FFT has the serious disadvantage of requiring an additional two

transpose steps, which typically are the chief bottlenecks on any system with a distributed

or external memory.

Reducing the size of the precalculated root of unity table used in step 2 of the four step

FFT algorithm is somewhat trickier. Nonetheless, it can be reduced in size to virtually

zero with only a slight increase in overall run time, by using what may be termed the

dynamic block scheme for roots of unity. The full size nl x n2 root of unity table can b_

written as U(j, k) = cxjk where a = e±2,'q'. Let B(r, s) denote a block of dimensions a x b
within the matrix U. Note that

U(j + ra, k + sb) = ot(j+'')(k+'b)

.-- OCTlt o_sb ot1"alt o_v ash

= U(j,k)U(j, sb)U(ra, k)U(ra, sS)



Thus an a x b block B(r, s) in the interior of U can be dynamically computed as follows:

B(r,s) = top left block [i.e. B(0,0)]

× "spike" from top edge

× "spike" from left edge

× upper left corner element of B(r, s)

This scheme can be visualized as in figure 1. It can be implemented with only one additional

complex multiplication in the innermost loop. The storage requirements for those subsets

of U array that must be precomputed are as follows:

Description Size

Upper left basic block

"Spikes" from top edge

"Spikes" from left edge

Block corners

2ab

2an2/b

21ml/a

2n/ab

If we assume that nl = n2 = a 2 = b2 (which is an optimal choice), then the total

space is only 8V_ cells, a sufficiently small amount that this data can be kept in main

memory. In tests of this scheme on Cray systems, the author merely selected a and b

to be 64, the natural vector length. With this choice, only a few thousand cells of main

memory are required even for mnltimillion point transforms. Performance tests of FFTs

using this scheme indicates that it adds only about five percent to the total run time (for

larger transforms), and the accuracy of the dynamically calculated roots is excellent.

Transposing Arrays in External Memory

The transpose step (step 3 of the four step FFT) is perhaps the most challenging

to perform efficiently on a data set residing in external memory. Before discussing this

matter in detail, it should be recalled that the array to be transposed consists of complex

data. In the following discussion it will be assumed that the real and imaginary parts of

this data are stored in completely separate memory locations, not interleaved as is the

Fortran convention. In this way the problem of transposing a complex array reduces to

transposing two real arrays. In fact, separate storage of real and imaginary data avoids

a significant performance degradation in computing with complex data on a number of

systems, including the ETA-10 and the Cray-2, since the standard Fortran COMPLEX

data format requires stride two access.

Probably the most efficient algorithm currently known to transpose data in external

storage is due to Fraser [7]. A particularly attractive aspect of this algorithm is that it can

easily be tuned for maximum efficiency on a given system. It is easier to exhibit an example

of Fraser's algorithm than to precisely state it. Suppose one wishes to transpose a 2 s x 27

matrix, which resides on an external random access dataset, into a 27 × 2s matrix. Suppose

also that the size of an efficient I[O block is 64 = 2 e, that two main memory buffers of size

512 = 29 are available, and that an external scratch dataset of size 215 is available. Let the



B(O,O)

w II I

B(r,s)

Figure 1: The Dynamic Block Scheme for Roots of Unity



notation (0 1 2 ... 12 13 14) denote the binary digit positions in the reverse binary

expansion of an index in the 2XS-long input array. Then the steps required to transpose

this array can be compactly presented as follows:

E1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

H1 0 1 2 3 4 5 8 9 10 11 12 13 14 6 7

M2 8 9 10 0 1 2 3 4 5 11 12 13 14 6 7

E2 8 9 10 0 1 2 11 12 13 14 3 4 5 6 7

M1 8 9 10 0 1 2 11 12 13 14 3 4 5 6 7

M2 8 9 10 11 12 13 0 1 2 14 3 4 5 6 7

E1 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7

The notation at the beginning of each line indicates the source of the data in each operation:

E1 denotes external dataset number 1, M2 denotes main memory buffer number 2, etc.

Note that the transfers between external memory and main memory only alter locations

6 through 14, and leave locations 0 through 5 unchanged (i.e., 64-1ong contiguous blocks

are preserved), and that transfers between two main memory buffers only alter locations

0 through 8 (i,e. only affect data within a single 512-1ong main memory buffer).

The first step, from external to main, involves fetching contiguous blocks of size 64

from disk with a block stride of four (i.e. fetch the first 64.1ong block, skip three blocks,

fetch the fifth 64-1ong block, etc.). The first step is done in batches of 8 blocks, so that 512

words are fetched to one of the main memory buffers before proceeding. The second step,

which is performed between the two main memory buffers, is to transpose the resulting

512-1ong array, considered as a 64 × 8 matrix, into a 8 × 64 matrix. In the third step, the

eight 64-long blocks in the main memory buffer are stored out to external memory, this

time with a block stride of eight. This completes one pass through the external data set.

In the next pass, eight contiguous 64-1ong blocks are fetched into main memory, and the

resulting 512-1ong array is transposed in a block fashion that preserves 8-long contiguous

sections. Finally, the resulting 64-1ong blocks are stored back to external memory, again in

a manner that achieves a certain block permutation. The array has now been transposed

in just two passes. With an adjustment of the parameters (for example, with a block size

of 32 and a memory buffer size of 1024), the transposition could be achieved in a single

pass. _-

Even from the above example, the power and generality of Fraser's technique can be

appreciated. Unfortunately, Fraser's algorithm cannot in general be performed in place

(i.e. using only one external dataset), unless one relaxes the requirement for a physically

transposed array (by utilizing pointers to index the external data blocks instead). However,

in special cases typical of common FFT sizes, there are other methods that can be done in

place and stiU produce a physically transposed array.

Consider first the case where nx = n_, so that the matrix is square. In that case a

block interchange technique can be used to transpose the array in a single pass, in place.

This can be done by simply considering the external _tl × _t2 matrix to be decomposed into

square blocks of size b on a side, where b is the block size of an efficient I/O operation.

10



The square blocks down the diagonal can be transposed simply by fetching the blocks one

at a time into main memory, transposing them using any efficient main memory scheme,

and storing the resulting matrices back in the same locations. The off-diagonal square

blocks can be fetched in opposing pairs, transposed in main memory, and then stored back

in opposite locations. One difficulty in applying this scheme is when the main memory

block size b is a power of two (which it almost always is). Transposing matrices whose

dimensions are powers of two in main memory, using the straightforward scheme, results

in severe memory bank conflicts on many vector supercomputers. However, such arrays can

be transposed completely without bank conflicts by fetching and storing opposite diagonals,

as is described in [6, p. 85]. The main memory scratch space requirement for the entire
scheme is 2b 2 cells.

For the common case of power of two FFTs, it can be assumed that either nl = n2

or else r_l = 27z2. In the second case, it does not appear possible to transpose the array

in one pass, in place, using only full block I/O transfers. However, such arrays can be

transposed in just two passes, in place, using only full block transfers, as follows. First,

consider the nl × n2 external array as two blocks of size n2 × n,, and transpose each of

these two square blocks in place, as described in the previous paragraph. This completes

the first pass. Now consider the resulting data array in external memory to be a n_ × nl

matrix. Inspection of an example shows that the columns of the resulting array need to

be de-interleaved -- column 2j, 0 _ j < n2 needs to be moved to column j, and column

2j + 1 needs to be moved to column j + r_2 (here the columns are numbered beginning with

zero). This de-interleaving could be done b rows at a time using a main memory scratch

array of size bnl, but this task can be done more efficiently and without need of substantial

scratch space by moving the columns in permutation cycles. For example, suppose nl = 8

and n2 = 4, so that after the block transpose operations we have a 4 × 8 matrix. Then the

first cycle would consist of storing column 1 in main memory, moving column 2 to column

1, column 4 to column 2, and column 1 (from main memory) to column 4. The second

cycle would consist of storing column 3 in main memory, moving column 6 to column 3,

column 5 to column 6, and column 3 (from main memory) to column 5. Columns 0 and

7 do not need to be moved. Note that this column movement procedure requires only 2r_2

cells of main memory scratch space. The dominant scratch space requirement for this case

is thus 252 (for each of the two square block transpositions), the same as the case nl = n2.

Performance Results Using the Minimal Scratch Space FFT

The above procedure has been implemented and tested on the Cray Y-MP, using one

processor and the SSD external memory device. The SSD I/O primitives SSREAD and

SSWRITE were called directly from the Fortran program. As before, the Cray library

simultaneous FFT routine (CFFTMLT) was used in steps one and four of the four step

algorithm. This routine is not an in-place FFT, so that a scratch array in addition to

the space for the data is required. Since the SSD is a rather limited resource, Fraser's

algorithm was not employed for the transpose steps -- the in-place schemes described in

the previous section were employed instead. The block length b for efficient I/O transfers

11



Size

m

16 338250

17 668266

18 668330

19 1328426

20 1328682

21 2649130

22 2650154

Scratch Using SSD

Space Time MFLOPS

Using Memory

Time I MFLOPS

0.0704 149.00

0.1574 141.59

0.2897 162.90

0.6391 155.86

1.2263 171.02

2.7007 163.07

5.2996 174.12

0.1169

0.2529

0.3094

0.6908

1.3065

2.8179

5.6132

89.68

88.10

152.52

144.21

160.52

156.29

164.39

Table 4: Minimal Scratch Space FFT Performance Results

between main memory and SSD (or between main memory and disk) on the Cray Y-MP

system is 512.

Table 4 includes results not only for an actual external memory (SSD) implementation

of the above scheme on the Cray Y-MP, but also for a modified version of the program

where the Fortran routines handling I/O actually just transfer data to a block of main

memory, insteading of referencing the Cray SSD primitives. With the latter figures one

can actually see how much of the performance degradation is due to the algorithm and

how much is due to inefficiencies in the Cray I/O system routines. The total amount of

main memory scratch space for this algorithm, including space for precalculated roots of

unity, is also included in this table.

Performing an FFT with Only Two Passes

The schemes that have been described so far produce a physically ordered FFT on an

external dataset in three or four passes. If one is willing to relax the requirement that

the final result be physically ordered, or if one is willing to allow a scratch dataset in

external memory of the same size as the input dataset, then the entire FFT operation can

be performed in only two passes (subject to certain conditions). The author is indebted to

Paul N. Swarztrauber for this observation.

As in the four step FFT above, it will be assumed in the following that n = nln2 an_

that b is the block size for efficient I/O operation. Also, all references to matrices will, as

before, assume columnwise storage. For simplicity, it will be assumed for the time being

that two buffers of size 2brtl cells each are available in main memory, although it will later

be seen that only one buffer this large is necessary. Similarly_ it will be assumed for the time

being that a scratch dataset equal in size to the input dataset is available in the external

memory device, although it will be seen later than this scratch dataset is not necessary if

one does not mind using pointers. This algorithm can then be stated as follows.

1. Consider the data in external memory as a nl × n_ complex matrix. Fetch the data

b rows at a time into one of the main memory buffers. For each batch of b rows,

12



perform b simultaneous n2-point FFTs on the b × r_2 array in main memory, using

the second main memory buffer as a scratch array.

2. Multiply the resulting data in each batch by appropriate roots of unity as in the four

step algorithm.

. Transpose each of the resulting b × _2 complex matrices into a n2 × b matrix, using

the second main memory buffer as a scratch array, and store the resulting data on

the scratch dataset in contiguous order. Store successive batches of data in successive

contiguous sections on the scratch dataset.

1 Consider the resulting data in the scratch dataset as a n2 x nl complex matrix. Fetch

the data b rows at a time into one of the main memory buffers. For each batch of

b rows, perform b simultaneous hi-point FFTs on the b x nl array in main memory,

using the second main memory buffer as a scratch array, and return the resulting b

rows to the same locations on external storage from which they were fetched.

As before, this FFT is an ordered transform -- no bit reversal transposition is necessary.

The reduction of the number of passes from three to two is accomplished by combining the

four step FFT with Fraser's transposition algorithm.

Let r = max(Ttl,n2). Then at least one main memory buffer of size 2br is required in

the above to hold b rows of the fetched data. However, the second main memory buffer can

be sharply reduced in size in many cases of interest. The additional scratch requirement

for performing the simultaneous FFTs in steps I and 4 can be reduced to only 2vr by

performing the FFTs in batches of v rows, where v is the natural vector length of the

system. If an in-place algorithm is used for the simultaneous FFTs, then this scratch

requirement can be completely eliminated.

Also, in the most common case of power of two transforms, the additional scratch space

needed for performing the main memory transpose in step 3 above can be reduced to only

2r ceils by applying techniques similar to those mentioned above for transposing power of

two arrays in external memory. One difference in this case is that the second dimension n2

can be much larger than the first dimension b. Nonetheless, the basic scheme of transposing

the square sub-blocks in place and then moving columns in permutation cycles can also be

applied for this application. --

Main memory space to hold precomputed roots of unity can be reduced from 27t to

only 8r by using the dynamic block method described above. Thus the total main memory

storage requirement for power of two transforms can be reduced to only 2(b + 5)r ceils

using this algorithm.

The requirement for a separate scratch dataset in external memory can be eliminated

by utilizing a block indexing scheme. At the end of step 3 above, the blocks of data

then in main memory can be returned to the same set of blocks in external memory from

which they were fetched, provided a table is maintained of where they are kept. Actually,

a table is not even necessary -- the permutation involved here is a simple index digit

13



Size Scratch
m Space

16 207178

17 668266

18 668330

19 1328426

20 1328682

21 2649130

22 2650154

Using SSD

Time MFLOPS

0.0824 127.26

0.1659 134.34

0.2705 174.44

0.5607 177.67

1.1960 175.35

2:4966 176.40

5.1872 177.89

Table 5: Two Pass FFT Performance Results

permutation. However, the ultimate user of the transformed data would also need to use

the same indexing mechanism to access the data.

This "two pass" FFT algorithm has been implemented on the Cray Y-MP using SSD.

A separate SSD scratch array was used instead of the virtual block scheme just mentioned.

This implementation also employed many of the same procedures discussed above to con-

serve main memory scratch space. The resulting performance figures are shown in table

5. As expected, these results are even higher than the SSD figures in table 4. In fact, the

performance figures listed in figure 5 are almost as high as those for Cray's main memory

FFT, which are listed in table 2.

Conclusion

The excellent data locality of the four step FFT algorithm and its derivatives clearly

is a significant advantage for a number of advanced computer systems. In addition, the

fact that most of the computation in these schemes reduces to simultaneous FFTs permits

some rather high performance implementations. It has also been demonstrated that some

apparent weaknesses of the basic algorithm, such as its large root of unity and scratch

space requirements and its reliance on array transpositions, can be largely eliminated by

employing some advanced techniques.

The performance figures in tables 4 and 5 show that very large FFTs can be efficientl£

computed using a Cray Y-MP with SSD. In fact, with 33 million words of main memory

and 268 million words of SSD, it should be possible to perform a FFT as large as 227 =

134,217,728 complex points, provided the SSD device can hold precisely 228 data elements

and no fewer. Such favorable results might not be possible on other systems with slower I/O

to external memory, but the techniques that have been presented should greatly improve

the performance reduction that otherwise occurs.

Another important limiting factor in performing very large FFTs in external memory,

which has not been mentioned yet, is the fact that there is often a significant wall clock delay

in performing I/O of any sort, even if the CPU time performance is acceptable. Wall clock

performance is particularly important when one is using almost all of main memory, so that

14



other jobs cannot be utilizing CPU resources when one's own job is waiting for I/O. Such

wall clock delays can be mitigated by overlapping computation and I/O where possible,

and by performing several I/O operations concurrently, provided the overall system I/O

bandwidth is not a limiting factor. Also, some systems have I/O primitives that allow data

to be accessed in external memory in sequences of contiguous blocks with a constant skip

distance between blocks. TMs is exactly the situation in all of the algorithms mentioned

above, and thus such an I/O function could be expected to substantially improve the wall

clock performance of this FFT scheme, and perhaps the CPU time performance as weU.

References

1. Agarwal, R. C., and Cooley, J. W., "Fourier Transform and Convolution Subroutines

for the IBM 3000 Vector Facility", IBM Journal of Research and Development, vol.

30 (1986), p. 145- 162.

2. Aggarwal, A., and Vitter, J. S., "The Input/Output Complexity of Sorting and

Related Problems", Communications of the ACM, vol. 31 (1988), p. 1116 - 1127.

3. Armstrong, J., "A Multi-Algorithm Approach to Very High Performance 1D FFTs",

Journal ofSupercomputing, vol. 2 (1988), p. 415 - 433.

4. Ashworth, M., and Lyne, A. G., "A Segmented FFT Algorithm for Vector Comput-

ers", Paral/e/Computing, vol. 6 (1988), p. 217 - 224.

5. Bailey, D. H., "A High-Performance Fast Fourier Transform Algorithm for the Cray-

2", Journal of Supercomputing, vol. 1 (1987), p. 43 - 60.

6. Bailey, D. H., "A High-Performance FFT Algorithm for Vector Supercomputers",

International Journal of Supercomputer Applications vol. 2 (1988), p. 82 - 87.

7. Fraser, D., "Array Permutation by Index-Digit Permutation", Journal of the Associ-

ation for Computing Machinery, vol. 23 (1976), p. 298 - 309.

8. Gentleman, W. M., and Sande, G., "Fast Fourier Transforms - For Fun and Profit",

AFIPS Proceedings, vol. 29 (1966), p. 563 - 578. .-

9. Swarztrauber, P. N., "FFT Algorithms for Vector Computers", Paral/el Computlng,

I (1984), p. 45- 63.

10. Swarztranber, P. N., "Multiprocessor FFTs", Parallel Computing, vol. 5 (i987), p.

197- 210.

15




